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Abstract. The interplay between spin and orbital degrees of freedom in the Mott–Hubbard
insulator is studied by considering an orbitally degenerate superexchange model. We argue that
orbital order and the orbital excitation gap in this model are generated through the order-from-
disorder mechanism known previously from frustrated spin models. We propose that the orbital
gap should show up indirectly in the dynamical spin structure factor; it can therefore be measured
using the conventional inelastic neutron scattering method.

1. Introduction

The recent renaissance in the study of transition metal oxides has emphasized the important
role being played by the orbital (pseudo-) degeneracy inherent to perovskite lattices. First
of all, the type of spin structure and the character of spin excitations crucially depend on the
orientation of the occupied orbitals [1–3]. Second, the excitations in the orbital sector get
coupled to the other degrees of freedom (electronic, lattice, spin) and might therefore strongly
modify their excitation spectra. It has also been suggested recently [4, 5] that low-energy
orbital fluctuations are responsible for the highly correlated metallic state of ferromagnetic
manganites.

Apparently, orbital order and orbital fluctuations deserve for careful theoretical and exp-
erimental study. However, the orbital excitation itself is spinless and chargeless and can
therefore be detected only indirectly due to its coupling to other types of excitation. For
instance, Ishiharaet al[6] have recently discussed the possibility of detecting orbital excitations
by means of the anomalous x-ray scattering method. In this paper we propose the idea of
detecting the orbital excitation in a conventional inelastic neutron scattering experiment. That
is, due to the inherent coupling of orbitals to the spin, a magnon and a single-orbital wave
can be excited by neutrons. Below, we illustrate this idea by considering an antiferromagnetic
model possessing an eg orbital degeneracy.

2. Spin–orbital model

Physically realistic spin–orbital models [3, 7] are usually rather complicated. To make
the discussion more transparent we consider a simplified version of the Kugel–Khomskii
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model [3,8,9]:

H =
∑
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describing the superexchange process in a Mott–Hubbard insulator with eg degeneracy, where
the Hund’s splitting in the intermediate state has been neglected. Here,ESi is the spin-1/2
operator, while the operatorsταi act in the orbital subspace with basis vectors(1, 0), (0, 1)
corresponding to the eg orbital states(x2 − y2) ∼ |x〉 and eg(3z2 − r2) ∼ |z〉, respectively.
The structure ofταi depends on the indexα which specifies the orientation of the bond〈ij〉
relative to the cubic axesa, b, c:

τ
a(b)
i = 1

4
(−σ zi ±

√
3σxi ) τ ci =

1

2
σ zi (2)

whereσ z andσx are Pauli matrices. The physical meaning of theτ -operators is to describe the
fluctuations of exchange bonds due to the orbital dynamics. On the cubic lattice, equation (1)
can be rewritten in the equivalent form:

H = −3 +
∑
〈i,j〉

Ĵ ijα

(
ESi · ESj +

1

4

)
(3)

where

Ĵ ijα = 4ταi τ
α
j − 2(ταi + ταj ) + 1.

The main feature of this model is the strong interplay between spin and orbital degrees
of freedom which is suggested by the very form of Hamiltonian (3). In fact, the Kugel–
Khomskii model contains rather nontrivial physics: the classical Néel state in equation (3)
(〈 ESi · ESj 〉 = −1/4) is infinitely degenerate due to the presence of the orbital sector; this extra
degeneracy must be lifted by some mechanism. According to a recent proposal by Feiner,
Olés, and Zaanen [8,9], this orbital-frustration problem is probably solved by the formation of
a RVB-type spin-singlet ground state. Technically, their suggestion is based on the observation
that spin–orbit coupling results in a new, composite excitation (simultaneous spin and orbital
flip). This mode is found to be soft in certain directions in the momentum space, leading
to one-dimensional fluctuations, thus completely destroying the magnetic order. In contrast,
Khaliullin and Oudovenko [10] have found the orbital-flip excitation to be gapped. The authors
hence concluded that the orbitally ordered quasi-one-dimensional quantum Néel state is the
proper low-temperature fixed point of model (3).

The purpose of our paper is twofold. First, we re-examine the solution of Feineret al[8,9]
and show that the soft spin–orbital mode does indeed acquire a finite gap through Villain’s
order-from-disorder mechanism [11]. Basically, this gap is determined by the orbital excitation
energy. Second, we calculate the spectral weight of the composite spin–orbital excitation in the
dynamical spin structure factor, suggesting the possibility of measuring the orbital excitation
gap indirectly in a conventional neutron scattering experiment.

3. Excitation spectrum

To study the model (1) we follow the same scheme and method as were used by Feineret al[8,9].
Namely we start with the assumption of long-range staggered spin order and an uniformz-type
orbital order (see figure 1).

Next we calculate the transverse spin-fluctuation spectrum by using the equation-of-
motion method, and calculate the quantum corrections to the magnetic order parameter. We
are motivated to use this method here for the following reason: employing a conventional
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Figure 1. |3z2−r2〉orbital order which leads to weakly coupled AF spin chains (Jc = 4,J⊥ = 1/4).
As discussed in reference [10], this type of orbital ordering provides the largest energy gain due
to quantum spin fluctuations. An orbital flip (indicated by an arrow) modulates the strength of the
neighbouring exchange bonds, breaking thec-chain. In the classical Ńeel state, orbital excitations
cost no energy. However, strong quasi-one-dimensional spin fluctuations stabilize this structure by
opening the orbital gap through the order-from-disorder mechanism.

diagrammatic technique, it was argued in reference [10] that the orbital degeneracy of the
classical state is removed by quantum spin fluctuations which generate orbital order and
spontaneously break the cubic symmetry. The interesting question is then whether and how
this order-from-disorder phenomenon manifests itself in the equation-of-motionansatzof
references [8,9].

The quantity to be calculated is the Green’s functionGi,i ′ = 〈〈S+
i |S−i ′ 〉〉, from which the

dynamical spin structure factor as well as the reduction of the spin order parameter can be
deduced. It obeys the following equation of motion:

ωGi,i ′ = 〈[S+
i , S

−
i ′ ]〉 + 〈〈[S+

i , H ]|S−i ′ 〉〉. (4)

Within a conventional spin-wave approximation, this equation reads

(ω − λmi)Gi,i ′ = δi,i ′ + 2mi
∑
jc

Gj,i ′ +
1

8
mi
∑
j⊥

Gj,i ′ +

√
3

8
mi
∑
j⊥

αijDj,i ′ . (5)

The following notation is introduced here:mi = 1 if site i belongs to sublattice A with up-
spin orientation andmi = −1 otherwise. The summations overjc andj⊥ are over nearest
neighbours of sitei in the c-chain and perpendicular directions, respectively. The factor
λ = Jc +2J⊥ = 9/2 andαij = |Rxij |−|Ryij |. Distinct from a Heisenberg model, a new Green’s
functionDj,i ′ = 〈〈Kx

jj |S−i ′ 〉〉 appears in the above equation. The operatorKx
jj ′ = σxj S

+
j ′

describes a simultaneous orbital–spin excitation which couples to a single spin flip. Following
references [8,9] we discarded the termKj 6=j ′ in equation (5), neglecting the correlation between
orbital and spin excitations from different chains.
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The dynamics of the composite excitationsK±jj = σ±j S+
j is described by the equation(
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2

)
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where the last term is
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∑
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z
l − (mi ∓ 1)K±j l

}
. (7)

Here, sitel is the nearest neighbour of sitej , andδSzj is the fluctuating part of the spin operator
Szj . TheL±j -term in equations (6) and (7) accounts for the correlations within thec-chain. If
one neglects this term (as Feineret al [8,9] did), one obtains from equations (5) and (6) a soft
mode mentioned above, which results finally in a breakdown of the spin-ordered state initially
assumed. We do not accept this approximation. It is the intra-chain quantum fluctuations
represented by theL±j -term that play a crucial role by making the orbital excitationsσ± (and
consequentlyσ±S+) acquire a finite-mass gap. The underlying physics can easily be observed
in the following way: we write the equations of motion for the operators in equation (7) treating
the bond(j l) exactly while considering the remaining bonds of thec-chain in a static Ńeel
approximation. This results in

[ω − (mi ± 3)]K±j l δS
z
j = (1±mi)(K±jj ±K±jj δSzl ) (8a)

(ω ∓ 2)K±jj δS
z
l = (1∓mi)(K±j l ±K±j l δSzj ) (8b)

[ω − (3mi ± 1)]K±j l = 2K±jj δS
z
l − 2K±j l δS

z
j + (mi ± 1)K±jj . (8c)

Many terms in these equations in fact drop out due to|mi | = 1. Equations (8a)–(8c) together
with equation (7) then lead to a very simple result—namely,
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8

ω + 4
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andL−j∈B = 0,L+
j∈A = 0. Now equation (6) can be written as follows (noteKx = K+ +K−):(
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The function6j = 8/(4mj + ω) is interpreted as a self-energy correction to the composite
excitationσxj S

+
j due to quantum fluctuations about the Néel state. We think that the large-ω

behaviour of6 is not quite reliable since short-time fluctuations of the environment of the
bond (j l) were neglected in the above crude derivation. We therefore take the low-energy
limit, 6j ≈ 2mj − 1

2ω, which is of main interest. Physically, the self-energy is mainly due
to the orbital-flip excitation (see figure 1) which acquires a finite energy as strong correlations
within thec-chains are explicitly taken into account.

We now use the notationGs = GAA , Ds = DAA if the indexs = 1, andGs = GBA,
Ds = DBA if s = −1. In the momentum space, equations (5) and (10) lead to

(sω − λ)Gs − λγkG−s + VkD−s = δs,1 (11a)

[sω − τ −6(sω)]Ds − τγ⊥D−s + VkG−s = 0. (11b)

Here,

6(ω) = 2− ω/2 τ = 3/2

γk = (8cz + γ⊥)/9 γ⊥ = (cx + cy)/2

Vk =
√

3(cx − cy)/2 cα = coskα.



Orbital order out of spin disorder 9761

Figure 2. The transverse spin-excitation spectrum along the direction0–X(π, 0, 0)–W(π, π/2, 0)–
L(π/2, π/2, π/2)–0–K(3π/4, 3π/4, 0) in the Brillouin zone. To the right from L, the spin–orbit
coupling vanishes and excitations are of either pure spin-flip or of simultaneous spin–orbital-flip
character. Solid lines: present theory. Dashed line: spin-wave dispersion calculated withJc = 4,
J⊥ = 1/4 and neglecting orbital fluctuations. Inset: the on-site dynamic structure factor; the
pseudogap seen aboutω ≈ 2 is the manifestation of the orbital gap.

Figure 3. The transverse spin-excitation spectrum (lower panel) and the
corresponding spectral weights in the dynamical structure factor (upper
panel) along the0–X(π, 0, 0)–N(π, 0, π)–0 direction. Dashed line: the
spin-wave spectrum calculated neglecting spin–orbit coupling.

Equations (11a) and (11b) can easily be solved to give two branchesω1(k) andω2(k) for the
spin excitations and their relative weights in a dynamic spin structure factor. The results are
shown in figures 2 and 3 for certain directions in the momentum space.

It should be noticed first that there is only one gapless mode at the0 point. This is a
plausible result since the original model has a continuous symmetry only in the spin subspace;
the second branch related to the breaking of the discrete orbital symmetry is expected to have a
finite gap. Our observation of only one gapless excitation in the spin response is consistent with
reference [10], but deviates strongly from the finding of Feineret al [8] of two gapless modes.
It has recently been suggested [9] that the reason for the disagreement between the results of
reference [8] and reference [10] could be found in the violation of the commutation relations
for composite spin–orbital operators in reference [10]. However, the present paper employs the
same method and the same commutation relations as Feineret al [8,9], but still arrives at the
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same conclusions as in reference [10]. This clearly rules out the above reasoning. The present
paper shows that the real origin of the controversy is in fact rather different: the quantum
deviations from the Ńeel state are strong and must therefore be properly taken into account
in the calculation of the orbital and composite excitations. In the approach employed here,
the effects of quantum fluctuations are represented by the last term in equation (6), which has
been discarded by Feineret al[8,9]. Alternatively, the self-consistent diagrammatic method of
reference [10] accounts for the underlying spin fluctuations through the deviations of the mean
value of nearest-neighbour spin products from that of the classical Néel state. We conclude that
the soft mode discussed in references [8,9] is an artefact of the approximation which neglects
the crucial effect of quantum spin fluctuations on the composite excitationσxS+. With regard
to the low-energy–momentum limit, model (1) behaves as a conventional Heisenberg system.
However, the underlying anisotropic orbital ordering and the presence of orbital fluctuations
strongly enhance quantum effects and reduce the order parameter. We find〈Sz〉 = 0.23 which
is consistent with reference [10].

Second, at the magnetic zone boundaries the spin–orbit coupling results in quite visible
deviations of the main magnon branch from that of an anisotropic Heisenberg model (see
figures 2 and 3). This effect, which is due to the modulation of exchange bonds by orbital
fluctuations, is expected to be a generic feature of spin–orbital models. In the present model,
the zone-boundary effect is related to the particular momentum dependence of the coupling
constantVk in equations (11a) and (11b). Experimentally, an anomalous zone-boundary
magnon softening has been observed in ferromagnetic manganites [12]. We have recently
suggested [13] this effect to originate in the modulation of double-exchange bonds by orbital
fluctuations.

Due to the finite hybridization of the excitationsS+ andσxS+ (note that orbital pseudospin
is not a conserved quantity), a conventional inelastic neutron scattering experiment might
provide information on orbital excitation energies as well. In figure 3, we plot the relative
spectral weight of two modes in the dynamical structure factor. A strong mixture of single-
spinS+ andσxS+ excitations and the ‘level repulsion’ effect take place at energies where these
excitations meet each other. In the present model, this results in an additional peak which has
substantial weight at certain momenta.

One comment is necessary at this point: the present approach (as well as the one
of references [8, 9]) implicitly assumes the formation of a bound state of orbital and spin
excitations (a tightly bound composite excitation). However, it might well be possible that
the bound state decays into an independent orbital wave and magnons. Instead of a well
defined additional peak, one should then expect a softening and damping of magnons due to
the coupling to the orbital–magnon excitation continuum. In fact, the latter picture is described
in reference [10], which treats the spin–orbit coupling perturbatively. In some low-dimensional
spin–orbital models the bound state might exist [14]. The problem of a bound state versus a
particle–hole continuum in a Kugel–Khomskii model remains open at present. With regard
to the low-energy behaviour, however, both approaches—the present one as well as that of
reference [10]—are fully consistent with each other since the essence of the model—that is,
the orbital-order-out-of-spin-disorder mechanism—is equally taken into account.

4. Conclusions

To summarize, we have studied a toy model providing a strong interplay between spin and
orbital excitations. In the general context of transition metal oxides, this work suggests that
the orbital fluctuations lead to a softening and damping of the zone-boundary magnons, and
may even result in an additional structure in the spin-response function of these compounds.
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